3 research outputs found

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd

    Mobile network performance from user devices: A longitudinal, multidimensional analysis

    Get PDF
    Abstract. In the cellular environment, operators, researchers and end users have poor visibility into network performance for devices. Improving visibility is challenging because this performance depends factors that include carrier, access technology, signal strength, geographic location and time. Addressing this requires longitudinal, continuous and large-scale measurements from a diverse set of mobile devices and networks. This paper takes a first look at cellular network performance from this perspective, using 17 months of data collected from devices located throughout the world. We show that (i) there is significant variance in key performance metrics both within and across carriers; (ii) this variance is at best only partially explained by regional and time-of-day patterns; (iii) the stability of network performance varies substantially among carriers. Further, we use the dataset to diagnose the causes behind observed performance problems and identify additional measurements that will improve our ability to reason about mobile network behavior

    Geographic Dissection of the Twitter Network

    No full text
    Geography plays an important role in shaping societal interactions in the offline world. However, as more and more social interactions occur online via social networking sites like Twitter and Facebook, users can interact with others unconstrained by their geolocations, raising the question: does offline geography still matter in online social networks? In this paper, we attempt to address this question by dissecting the Twitter social network based on users ’ geolocations and investigating how users ’ geolocation impacts their participation in Twitter, including their connections to others and the information they exchange with them. Our in-depth analysis reveals that geography continues to have a significant impact on user interactions in the Twitter social network. The influence of geography could be potentially explained by the shared national, linguistic, and cultural backgrounds of users from the same geographic neighborhood
    corecore